Perturbed Decomposition Algorithm applied to the multi-objective Traveling Salesman Problem

نویسندگان

  • Marek Cornu
  • Tristan Cazenave
  • Daniel Vanderpooten
چکیده

Dealing with multi-objective combinatorial optimization, this article proposes a new multi-objective set-based metaheuristic named Perturbed Decomposition Algorithm (PDA). Combining ideas from decomposition methods, local search and data perturbation, PDA provides a 2-phase modular framework for finding an approximation of the Pareto front. The first phase decomposes the search into a number of linearly aggregated problems of the original multiobjective problem. The second phase conducts an iterative process: aggregated problems are first perturbed then selected and optimized by an efficient single-objective local search solver. Resulting solutions will serve as a starting point of a multi-objective local search procedure, called Pareto Local Search. After presenting a literature review of meta-heuristics on the multi-objective symmetric Traveling Salesman Problem (TSP), we conduct experiments on several instances of the bi-objective and tri-objective TSP. The experiments show that our proposed algorithm outperforms the best current methods on this problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Heuristic Algorithms for Solving Single-Vehicle and Multi-Vehicle Generalized Traveling Salesman Problems (GTSP)

Among numerous NP-hard problems, the Traveling Salesman Problem (TSP) has been one of the most explored, yet unknown one. Even a minor modification changes the problem’s status, calling for a different solution. The Generalized Traveling Salesman Problem (GTSP)expands the TSP to a much more complicated form, replacing single nodes with a group or cluster of nodes, where the objective is to fi...

متن کامل

A reactive bone route algorithm for solving the traveling salesman problem

The traveling salesman problem (TSP) is a well-known optimization problem in graph theory, as well as in operations research that has nowadays received much attention because of its practical applications in industrial and service problems. In this problem, a salesman starts to move from an arbitrary place called depot and after visits all of the nodes, finally comes back to the depot. The obje...

متن کامل

Efficient parallelization of the genetic algorithm solution of traveling salesman problem on multi-core and many-core systems

Efficient parallelization of genetic algorithms (GAs) on state-of-the-art multi-threading or many-threading platforms is a challenge due to the difficulty of schedulation of hardware resources regarding the concurrency of threads. In this paper, for resolving the problem, a novel method is proposed, which parallelizes the GA by designing three concurrent kernels, each of which running some depe...

متن کامل

An Effective Genetic Algorithm for Solving the Multiple Traveling Salesman Problem

The multiple traveling salesman problem (MTSP) involves scheduling m > 1 salesmen to visit a set of n > m nodes so that each node is visited exactly once. The objective is to minimize the total distance traveled by all the salesmen. The MTSP is an example of combinatorial optimization problems, and has a multiplicity of applications, mostly in the areas of routing and scheduling. In this paper,...

متن کامل

Solving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm

The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers & OR

دوره 79  شماره 

صفحات  -

تاریخ انتشار 2017